R—

[e—p——

[—

NASA-TM-108130

. JQE IS
ORIGINAL P

-
7/{/’ — / —7

/3¢ /7 @
prs”

GENERAL OBJECT-ORIENTED SOFTWARE DEVELOPMENT WITH ADA: A LIFE CYCLE APPROACH
CASE Technology Conference
April 1988

Ed Seidewitz
Code 554 / Flight Dynamics Analysis Branch

Goddard Space Flight Center
Greenbelt MD 20771
(301) 286-7631

Abstract

The effective use of Ada requires the adoption of
modern software-engineering techniques such as
object-oriented methodologies. A Goddard Space
Flight Center Software Engineering Laboratory Ada
pilot project has provided an opportunity for studying
object-oriented design in Ada. The project involves
the development of a simulation system in Ada in
parallel with a similar FORTRAN development. As
part of the project, the Ada development team
trained and evafuated object-oriented and process-
oriented design methodologies for Ada.

In object-oriented software engineering, the software
developer attempts to model entities in the problem
domain and how they interact. Most previous work
on object-oriented methods has concentrated on using

-object-briepted ideas in software design and

implementation. However, we have also found that
object-oriented concepts can be used advantageously
throughout the entire Ada software life-cycle. This
paper provides a distillation of our experiences with
object-oriented software development. It considers
the use of entity-relationship and process/data-flow
techniques for an object-oriented specification which
leads smoothly into our design and implementation
methods, as well as an object-oriented approach to
reusability in Ada.

1. Introduction

Increased productivity and reliability from using Ada
must come from innovative application of the non-
traditional features of the language. However, past
experience has shown that traditional development
methodologies result in Ada systems that "look like a
FORTRAN design" (see, for example, [Basili 85]).
Object-oriented techniques provide an alternative

approach to effective use of Ada. As the name
indicates, the primary modules of an object-oriented
design are objects rather than traditional functional
procedures. Whereas a procedure models an action,
an object models some entity in the problem domain,
encapsulating both data about that entity and

- operations on that data. Ada is especially suited to

this type of design because its package facility
directly supports the construction of objects.

The Goddard Space Flight Center Software -
Engineering Laboratory is currently iavolved in an
Ada pilot project to develop a system of about 60,000
lines (20,000 statements) [Nelson 86, McGarry 88].
This project has provided an opportunity to explore
object-oriented software development methods for
Ada. The pilot system, known as "“GRODY™, is an
attitude dynamics simulator for the Gamma Ray
Observatory (GRO) spacecraft and is based on the
same requirements as 2 FORTRAN system being
developed in parallel.

The GRODY team was initially trained both in the
Ada language and in Ada-oriented design
methodologies. The team specifically studied the
msj‘thodology promoted by Grady Booch [Booch 83)
and the PAMELA™ methodology of George Cherry
(Cherry 85). Following this, during 2 training
exercise, the team also began synthesizing a2 more
general approach to object-oriented design. At an
early stage of the GRODY development effort, the
team produced high-level designs for GRODY using
each of these methodologies. Section 2 summarizes
the comparison of methodologies made by the
GRODY team.

PAMELA is a registered trademark of George W. Cherry.

S

e T _

v(NASA-Tﬁ—lQBlBO) GENERAL N93-T70958
GRJECT-ORTENTED SOFTWARE
SEVELOPMENT WITH Ada: A LIFE CYCLE el as
PPROACH (NASA) 15 p ;
5207 - A ¢ ,
PRECEDING PAGE E}LAPJES_ NOT FiLwtED 13/61 0136176

General Object-Oriented Software Development with Ada

Unfortunately, the system requirements given to our
team were highly biased by past FORTRAN designs
and implementations of similar systems. Therefore
we began by recasting the requirements in a more
language-independent way using the "Composite
Specification Model” [Agresti 84, Agresti 87]). This
method involves the use of state transition and entity-
relationship techniques as well as more traditional
data flow diagrams. We then designed the system to
meet this specification, using object-oriented
principles. The resulting design is, we believe, an
improvement over the previous FORTRAN designs
[Agresti 86). The system is Currently in final system
testing.

Previous work by the present authors has
concentrated on using object-oriented ideas in
software design and implementation.. This work
resulted in a design method which synthesizes the best
methods studied during the GRODY project
(Seidewitz 86a, Seidewitz 86b]. However, we have
found that object-oriented concepts can be used
advantageously throughout the entire Ada software
life-cycle [Stark 87). Section 3 provides a distillation
of our experience with GRODY and other Ada
projects into an evolving life-cycle methodology.

2. Comparison of Methodologies

This section presents a comparison of design
approaches to the GRO dynamics simulator, including
the traditional functional approach used for the
FORTRAN version, the Booch methodology,
PAMELA and the general methodology developed by
the team itself. It should be noted that the GRODY
team was trained in the Booch and PAMELA
methodologies in early 1985. Since then, both
methodologies have evolved considerably, in many
cases addressing in different ways the very issues that
led us to develop our methodology. Nevertheless, as
background motivation for the direction taken by the
GRODY team, the comparison in this section is in
terms of the 1985 versions of the methodologies.

unctiona ign

The design of the FORTRAN version of the

=esimulator is functionally-oriented. This design has a ~*

strong heritage in previous simulator and ground
support systems. It consists of three major subsystems
which interact as shown in figure 1. The *TRUTH
MODEL" subsystem includes models of the spacecraft

5207

hardware, the external environment and the attitude
dynamics; that is, the "real world" as opposed to the
spacecraft control system. The SIMULATION

. CONTROL subsystem alternatively activates the

SPACECRAFT CONTROL and TRUTH MODEL
subsystems in a cyclic fashion. Each subsystem
consists of a single driver subroutine which calls on a
hierarchy of lower-level subroutines to perform the
functions of the subsystem when activated by
SIMULATION CONTROL. Data flow between
subsystems, as well as system parameterization, is
entirely though a set of global COMMON areas.

SIMULATION
CONTROL

§

GLOBAL o >
COMMON SPACECRAFT
DATA CONTROL

—_J

[}
FIGURE 1 FORTRAN Simulator Functional Design

The strengths of this functional design lay in its
relatively simple structure and direct implementatioa
in FORTRAN. However, its main drawback is the
complete lack of encapsulation of global data. The
only restrictions on which code may access which
global data are enforced by programmer discipline.
This can lead, intentionally or not, to illicit
corruption of global data by code in one part of the
system which is unexpected by another part of the
system. Further, most sifffoiation pardMerers are
hard-coded into the global common area, making the
user interface for the system hard to modify and
impossible to generalize.

L

M

!

“h

2 h’ 1

Grady Booch is, perhaps, the most influential
advocate of object-oriented design in the Ada
community (Booch 86b, Booch 87]. As learned by the
GRODY team, Booch's methodology derives a design
from a textual specification or informal design
{Booch 83], an approach adopted from Abbott
[Abbott 83). The technique is to underline all the
nouns and verbs in the specification. The objects in
the design derive from the nouns; object operations
derive from the verbs. Obviously, some judgment
must be used to disregard irrelevant nouns and verbs
and to translate the remaining concepts into design
objects. Once the objects have been identified, the
design can then be represented diagrammatically
using a notation which shows the dependencies
between Ada packages and tasks which implement the
objects. Figure 2 shows such a diagrammatic top-
level design for GRODY.

FIGURE 2 Object-Oriented Simulator Design
(Booch Methodology)

The Booch design methodology contains all the basic
framework of the object-oriented approach.
However, application of this methodology to GRODY
indicated that it was not readily applicable to sizable
systems. The team found the graphical notation clear

but nqt detailed or rigorous enough==Further, Beoch—=

gives no explicit method for diagramming a
hierarchical decomposition of objects, which is
needed for any sizable system. Booch's notation does
not, therefore, seem to be a complete design notation.

5207

General Object-Oriented Software Development with Ada

Note, however, that in more recent “{ork Booch has
extended the scope of the notation to address some of
these shortcomings {Booch 87].

A second difficulty of Booch's methodology is in the
technique for deriving the design from the
specification text. This works well when the
specification can be written concisely in a few
paragraphs. However, when the system requirements
are large, as with GRODY, this can be difficult. In
addition, any attempt to use such a technique directly
on a requirements document such as ours is doomed
to failure due to the sheer size and complexity of the
document. Realizing such drawbacks, Booch no
longer advocates the use of this textual method,
which was never actually intended for large systems
development {Booch 86b). Instead, he derives an
objéct-oriented design from a data flow diagram
based specification [Booch 86a, Booch 87). However,
from the published examples it is still unclear how to
systematically apply this method to realistic systems.

2.3 PAMELA

The second methodology considered by the GRODY
team was the Process Abstraction Method for
Embedded Large Applications (PAMELA) developed
by George Cherry (Cherry 85, Cherry 86). PAMELA
is oriented toward real-time and embedded systems.
PAMELA is process-oriented, so a PAMELA design
consists of a set of interacting concurrent processes.
A well designed process is effectively a concurrent
object, thus PAMELA is object-oriented in a general
way.

PAMELA uses a powerful graphical notation without
magy of the drawbacks found in Booch'’s notation
[Cl:_l;en'y 86]. During the PAMELA design processes,
the designer successively decomposes processes into
concurrent subprocesses until he reaches the level of
primitive single-thread processes. The GRODY team
found that PAMELA provides fairly explicit
heuristics for constructing good processes. The
designer uses these hints to construct the top-level
processes from the system specification. The designer
then recursively decomposes each non-primitive
processes until only primitive processes remain. The
primitive processes can then be coded as Ada tasks
with a single thread of control. Non-primitive
processes are simply packages of lower level processes
and thus contain multiple threads of control. Figure
3 shows the top levels of a PAMELA design for

GRODY.

General Object-Oriented Software Development with Ada

AENATOR O

-y
e T ¢
ORALATOM BATA {
-
SWON SntA ¥
o PTARA ¢

i 08 071 v W o aAATY Jewiren
v— 3
ssmoy et S, 2CT
- St IR u_“‘
L e S~

;

i

'l

FIGURE 3 PAMELA Simulator Design

PAMELA's heuristics can be very effective when
designing a real-time system that is heavily driven by
external asynchronous actions. In other cases,
however, they require considerable interpretation to
be applicable. Although parts of GRODY might
conceptually be concurrent (because GRODY
simulates actions that happen in parallel in the real
world), there is no requirement for concurrency in
the simulation of these actions because GRODY does
not have to interface with any active external entity
(except the user). In addition, since GRODY runs on
a sequential machine, the overhead of Ada tasking
and rendezvous could greatly degrade the time
performance of the system. Thus, one interpretation
of PAMELA's principles might leave very large
sections of GRODY as primitive single-thread
processes, with only a few concurrent objects in the
entire design. To proceed further in the
decomposition, the designer has to rely more on
intuition about what makes a good object and rely
less on the methodology.

In fact, at the time that the GRODY team was using

“PAMELX, it provided no support for the

decomposition and design of anything below the level

of the primitive process, an Ada task (Cherry 85].

Since then, Cherry has added several concepts to the
methodology, including the use of abstract data types
{Cherry 86).. Recently he has introduced a major

5207

update of PAMELA known as "PAMELA 2" which is
now explicitly object-oriented [Cherry 88]. In fact,
PAMELA now stands for "Pictorial Ada Method for
Every Large Application.® It is still to early,
however, to evaluate the generality of PAMELA 2 as
an object-oriented methodology.
neral -Oriented Devel

As a result of the above experiences, the GRODY
team developed its own object-oriented methodology
which attempts to capture the best points of the
object-oriented approaches studied by the team as
well as traditional structured methodologies
(Seidewitz 86a, Seidewitz 86b, Stark 87]. It is
designed to be quite general, giving the designer the
flexibility to explore design alternatives easily. It is
also based on principles that guide the designer in
constructing good object-oriented designs. This
methodology was used to develop the complete
detailed design for GRODY.

This geéneral object-oriented development ("GOOD")-
methodology is based on general principles of
abstraction, information hiding and design hierarchy
discussed in the next section. These principles are
less explicit than Booch's methodology or PAMELA,
but they do provide a firm paradigm for generating-
and evaluating an object-oriented design. Indeed, as
mentioned above, the team found the Booch and
PAMELA design construction techniques restrictive,
often necessitating the designer to rely on intuition
for object-oriented design. The GOOD methodology
is an attempt to codify this intuition into a basic set
of principles that provide guidance while leaving the

; designer the flexibility to explore various design
«" approaches.

In addition, we have also considered, independently
of Booch, the transition from structured analysis
{DeMarco 79] to object-oriented design in the context
of the GOOD methodology, developing 2 technique
known as abstraction analysis [Seidewitz 86a,
Seidewitz 86b). This technique is analogous to
transform and transaction analysis used in structured
design {Yourdon 78). However, proceeding into
object-oriented design from a structured analysis, by

whatever means, requires an “sxtraction®=ef-probleMm. ~ =

domain entities from traditional data flow diagrams.
From an object-oriented viewpoint, it seems
appropriate to instead begin 2 specification effort by
identifying the entities in a problem domain and their
interrelationships. Study is continuing on including

General Object-Oriented Software Development with Ada

such object-oriented system specification techniques
in the GOOD methodology and on applying object-
oriented principles throughout the Ada life cycle
(Stark 87]. Section 3 will discuss this in more detail.

Figure 4 shows the actual design of the main part of
GRODY. The object diagram notation
(Seidewitz 86b] used in figure 4 shows the
dependencies between the various objects which make
up a system design, in a manner similar to Booch's
diagrams. However, the object diagram notation also
explicitly includes the idea of leveled composition of
objects, like the PAMELA process graph notation.
Moreover, as will be discussed in° more detail in
section 3, the designer may use object diagrams to
express the design from the highest levels all the way
down to the procedural level. (This capability has
also been added to PAMELA 2 [Cherry 881.)

Since GRODY was derived from the same basic
requirements as the FORTRAN design, there are
similarities in the designs of the two systems.
However, there are also some fundamental differences
in the GRODY design that can be traced to the
object-oriented methodology. For example, in
GRODY the TRUTH MODEL is effectively passive,
with the SPACECRAFT CONTROL calling on
operations as needed to obtain sensor data and
activate actuators. All sensor and command data is
passed using these operations. This design approach
was encouraged by viewing the TRUTH MODEL as
an object with multiple operations rather than as a
functional subsystem with a single driver.

The simulation timing of GRODY is also different
from the FORTRAN design. The object-oriented
methodology led. to consideration of a “TIMER"
object in GRODY which provides an abstraction of
the simulation time. This utility object provides a
common time reference for the SPACECRAFT
CONTROL and TRUTH MODEL separate from the
SIMULATION CONTROL loop. Unlike the
FORTRAN design, in GRODY the "cycle times" of
the SPACECRAFT CONTROL and TRUTH MODEL
are not the same. The GRODY team chose to
faithfully model, in the SPACECRAFT CONTROL
abstraction, the timing of the actual spacecraft control
software, which is not under user control. However,

GRODY allows the simulation user to set the cycle™

time for the TRUTH MODEL over 2 fairly wide
range, to allow the user to trade-off speed and
accuracy as desired.

5207

SIMULATION
CONTROL

PARAMETER
DATABASE

FIGURE 4 Object-Oriented Simulator Design
(GOOD Methodology)

Finally, the PARAMETER DATABASE and
GROUND COMMAND DATABASE objects
encapsulate user settable parameters for the
simulation. Similar data is contained in COMMON
blocks in the FORTRAN design. This encapsulation
of "global” data is typical of object-oriented designs.
It provides both increased protection of the data
encapsulated and increased opportunity for reuse. For
example, the simulation parameters in the FORTRAN
design are COMMON block parameters which must
be hard-coded into the user interface code. (For
simplicity the user interface modules have ‘not been
included in figure 4.) In the GRODY design,
simulation parameters are identified by enumeration
constants, which allows the user interface displays to
be parameterized by external data files. This should
greatly increase the reusability of the user interface.

The differences discussed above could probably have
been incorporated into the FORTRAN design.
However, it was largely the influence of the object-
oriented approach which lead to their consideration
for GRODY when they had not been considered in
several previous designs of simulators for FORTRAN.
Coansiderations of encapsulation and reusability
indicate that the GRODY design may be "better” than

. the FORTRAN design. This is, of course, the goal of

object-oriented methods. However, the true test of
the merits of the GRODY desiga will only come from
continuing studies of the comparative maintainability
of the FORTRAN and Ada simulators.

General Object-Oriented Software Development with Ada

In terms of the methodology itself, the team found
the object diagram notation extremely useful for
discussing the design during development. Further,
the notation provided complete documentation of the
design and was tailored specifically towards Ada. This
made the transition to coding very smooth, and
allowed the documentation to be readily updated as
coding proceeded. By the end of coding, there were
no major changes in the design and most changes that
did occur were additions rather than alterations.

The object diagram notation evolved considerably
during the GRODY project in response {0 continuing
experience with its use. The lack of a specific
methodology at the start of the GRODY project was 2
problem for the team, as was the continuing evolution
of the methodology over the duration of the project.
Further, the fact that managers were not familiar
with the new methodology made the use of object
diagrams difficult at reviews. Another problem was
that the detail of the object diagrams and the
emphasis on keeping the documentation up-to-date
required a great deal of effort to maintain a rather
large design notebook. The team clearly saw the great
need for automated tools to support the methodology
in this area. Consideration has also been given to
extend the object diagram mnotation to better cover
such topics as generics, abstract data types and large
system components. :

3. The GOOD Methodology

Section 2 described the background motivation of the
GRODY team in developing the GOOD methodology
and applying it to the full GRODY design. The
experience with the Composite Specification Model
and object-oriented design on GRODY, as well as
experience on other Ada projects, has led to the
continuing evolution of a comprehensive, integrated,
object-oriented approach to software development,
encompassing all phases of the software life cycle.
This section provides an overview of the current
GOOD life cycle approach.

3.1 Entities and Relationshins

The modules of an_ objegt-oriented design are
intended to primarily represent problem domain
entities. From an object-oriented viewpoint, it seems
appropriate to begin a software specification effort by
identifying the entities in a problem domain and their
interrelationships. Entity-relationships and data flow

5207

techniques can then complement each other, the
former delineating the static structure problem
domain and the latter defining the dynamic function
of a system. This is similar to the *contextual” and
“functional® views of the Composite Specification
Model {Agresti 84, Agresti 87]. A close relation to the
specification approach discussed here is described in
some detail in {Bailin 88].

An entity is some individual item of interest in the
problem domain. For example, consider the
specification of GRODY. Several problem domain
entities immediately come 1o mind: the spacecraft
structure, sensors and thrusters on the spacecraft, the
environment, etc. An entity is described in terms of
the relationships into which it enters other objects. A
spacecraft might be in a certain orientation, have
certain thrusters, etc. Entities can also have
attributes, such as spacecraft mass, which are data
items describing the intrinsic properties of the entity,

To model the structure of the problem domain
requires the identification of entity types which are
groups of entities with the same types of attributes
and relationships. For example, we may define a
SPACECRAFT STRUCTURE entity type with

‘SPACECRAFT MASS and DRAG COEFFICIENT

attributes. All SPACECRAFT STRUCTURE entities
have these attributes, but different individual entities
have different specific values for the attributes.

A problem domain model must also include a
specification of all possible relationships between
various types of entities. These relationships may
themselves have attributes and enter into other
relationships. For example, the ATTITUDE STATE
of a spacecraft describes its current orientation
drelative to inertial space and its current rotational
motion. The ATTITUDE STATE is effectively a
relationship between the spacecraft, the environment
and the effect of any thruster firings used to reorient
the spacecraft. This relationship has such attributes
as the current spacecraft orientation and the
spacecraft angular rotation rates.

The entity-relationship diagram (ERD) is a common
graphical tool for entity-oriented specification
{Chen 76). Figure 5 shows an ERD for the GRODY
problem domain. The "notation for this diagram is
based on [Ward 85). Complex relationships such as
ATTITUDE STATE are shown as associative entities
on ERDs such as figure 5. Associative entities can be
identified on an ERD by being connected to a

I

relationship symbol by an arrow. .Associative entities
are "objectivizations” of relationships which may have
attributes and enter into other relationships.

o BUM SEASLEN BV
o EARTH WEASURENENT

SPACECRAFT
CONTROL

. COMUANOED
ATTNITUCE

CONTROL e ATNITUOE} ATTITUDE
SIGNAL o] STAYE
THRUSTERS m‘ EVIRONMENT
o AUGNMENT o ATHOSPNEMC DENBITY
o THAUSY o QRAVITY CONSTANT
o SUN PORITION
* CARTH POSTION
LEGEND
ey veee [-
STAUCTURE
reaTionsr O

SPACECRAFT HASS
ASSOCIATIVE __, + oRAG CoGPTWIBNT

ENTITY

ATTRIGUTE «

FIGURE 5 Attitude Dynamics Entity-Relationship
Diagram

Figure § shows only a small part of the example
problem domain. It would grow as additional entities
and relationships are added to describe additional
parts of the problem domain. As the specification
grows, a complete ERD can quickly become
cumbersome. It is possible to "level” ERDS showing
complex entities on high-level diagrams which enter
into composite relationships. These are then broken
down in lower-level diagrams. An extended daa
dictionary notation is also useful as a textual
representation of entity type and relationship
definitions. In addition, the data dictionary provides
a common basis for data definition between the static
and the dynamic views of the problem domain.

3.2 Processes and Data Flow

ERDs show all possible relationships between
different types of entities. They do not show the
actual relationships between specific entities at
specific points in time, nor how these actual
relationships change over time. Data flow techniques,

5207

General Object-Oriented Software Development with Ada

however, provide exactly this dynamic view.
Traditional data flow diagrams (DFDs) show the flow
of data between functional transformations. We will,
instead, diagram the flow of data between processes
which represent the dynamic view of one or. more
entities in the problem domain. A process is
effectively a state machine which accepts input
stimuli, reacts to it and produces output stimuli,
possibly modifying some internal state data. It has no
"operations™ as such, only stimuli and responses.
These stimuli may be either in the form of data flow
or pure control signals.

To construct a dynamics data flow model, one needs
to identify those active entities which have associated
processes. For each relationship in the static entity-
relationship model, we choose onc of the related
entity types to be active. This entity type has an
associated process which is charged with maintaining
the state of the relationship in response to internal
and external stimuli. Note that an entity type may be
active relative to one relationship and passive relative
to another, and that associative entities may be active
or passive.

For example, consider a simplified attitude dynamics
simulation system similar to GRODY. The attitude of
a spacecraft is its orientation relative to inertial space,
and an attitude dynamics simulator models the
rotational motion of the spacecraft in response to
external disturbances and the spacecraft control
system. Figure 5 describes the problem domain for

‘such a system. The active entities in this case interact

in a control loop outlined in figure 6. All the
processes shown on figure 6 are associated with active
entities on figure 5. A data item flowing on a
disgram such as figure 6 may be a passive entity, an
attribute or any other composite data item or data
element defined in the data dictionary.

The dynamic model must also provide a specification
for each individual process. This specification should
include a textual description of the object as well as a
listing of all inputs and outputs. The process
specification also provides a place to include "non-
functional® requirements such as timing and accuracy
constraints. However, the main point of a process
specification is to detail the function of the process.
This can be ifithe form of structured English, a state
transition diagram or some other appropriate notation,
such as differential equations for the time evolution
of the spacecraft attitude.

¥t

General Object-Oriented Software Development with Ada

ATTNITUDE SENSORS SENSOR
STATE) DATA

[]

SPACECRAFT
ENV‘R?N“ENT CONTROL
rmwsx‘7 Jt:ﬁl
TORQUE RS COMMAND
LECEND
PROCESS

OATA FLOW O—b-

FIGURE 6 Attitude Dynamics Data Flow Diagram

The function of a process can also be given by a
lower-level data flow diagram. Decomposition can
continue recursively on all diagrams until all processes
have been decomposed into primitive functions and
states. This results in a leveling similar to the
leveling of traditional DFDs. However, unlike DFDs,
each object at each level of a process-data-flow
diagram specification has a complete process
specification. Each process must also be associated a
reasonable problem domain entity independently of
its decomposition.

ject Identification

The intent of an object is to represent a problem
domain entity and any associated process. The
concept of abstraction deals with how an object
presents this representation to other objects
[Booch 86b, Dijkstra 68]. Ideally, the objects in a
design should directly reflect the problem domain
entities identified during system specification.
However, various design considerations may require
splitting or grouping of objects and there will almost
always be additional objects in a design to handle
“executive” and “utility" functions. Thus there is a

. Spectrum of levels of abstraction of objects—in a
‘design, from objects which closely model problem
domain entities to objects which really have no reason’

for existence [Seidewitz 86b). The following are some
points in this scale, from strongest to weakest

5207

Entity Abstraction - An object represents a useful

model of a problem domain entity or class of entities.

Action Abstraction - An object provides a

generalized set of operations which all perform
similar or related functions (this is similar to the idea
of a "utility” object in [Booch 87)).

Subsvystem Abstraction - An object groups together a

set of objects and operations which are all related to a
specific part of a larger system (this is similar to the
"subsystem" concept in [Booch 87]).

The stronger the abstraction of an object, the more
details are suppressed by the abstract concept. The
principle of information hiding states that such details
should be kept secret from other objects {Booch 87,
Parnas 79), so as to better preserve the abstraction
modeled by the object.

3.4 Design Hierarchies

The principles of abstraction and information hiding
provide the main guides for creating "good” objects.
These objects must then be connected together to
form an object-oriented design. This design is
represented using the graphical object diagram
notation [Seidewitz 86b]. .

The construction of an object-diagram-based design
is mediated by consideration of two orthogonal
hierarchies in software system designs [Rajlich 85).
The composition hierarchy deals with the composition
of larger objects from smaller component objects. The
seniority hierarchy deals with the organization of a set
of objects into "layers*. Each layer defines a virtual
language extension which provides services to senior
}layexs {Dijkstra 68). A major strength of object
diagrams is that they can distinctly represent these
hierarchies.

The composition hierarchy is directly expressed by
leveling object diagrams (see figure 7). At its top

. level, any complete system may be represented by a

single object which interacts with external objects.
Beginning at this system level, each object can then
be refined into component objects on a lower-level
object diagram, designed to meet the specification for
the object. The result is a leveled set of object
diagrams which completely describe the structure of a
system. At the lowest level, objects are completely
decomposed into primitive objects such as procedures,
tasks and internal state data stores. At higher levels,

General Object-Oriented Software Development with Ada

object diagram leveling can be used in a manner
similar to Booch's "subsystems” {Booch 87).

COMPONENTS

FIGURE 7 Composition Hierarchy

The seniority hierarchy is expressed by the topology
of connections on a single object diagram (see figure
8). An arrow between objects indicates that one
object calls one or more of the operations provided by
another object. Any layer in a seniority hierarchy
can call on any operation in junior layers, but never
any operation in a senior layer. Thus, all cyclic
refationships between objects must be contained
within a virtual language layer. Object diagrams are
drawn with the seniority hierarchy shown vertically.
Each senior object can be designed as if the
operations provided by junior layegs were "primitive
operations” in an extended language. Each virtual
language layer will generally contain several objects,
each designed according to the principles of
abstraction and information hiding.

m 1gn

The main advantage of a seniority hierarchy is that it
reduces the coupling between objects. This is because

__- - all objects in one virtual language layer need to know

nothing about senior layers. Further, the
centralization of the procedural and data flow control
in senior objects can make a system easier to
understand and modify.

5207

VIRTUAL
.. LANGUAGE
J INTERFACE 1

7 3

VIRTUAL
........................... LANGUAGE
IMTERFACE 1

FIGURE 8 Seniority Hierarchy

However, this very centralization can cause a messy
bottleneck. In such cases, the complexity of senior
levels can be traded off against the coupling of junior
levels. The important point is that the strength of the
seniority hierarchy in a design can be chosen from a
spectrum of possibilities, with the best design
generally lying between the extremes. This gives the
designer great power and flexibility in adapting
system designs to specific applications.

Figure 9 shows one possible preliminary design for
the ATTITUDE SIMULATOR. For simplicity, the
sensors and thrusters are represented by a single
*SPACECRAFT HARDWARE" object in figure 9.
Note that, by convention, the arrow labeled "RUN" is
thé initial invocation of the entire system. [n
preliminary design diagrams such as figure 4, it is
sometimes convenient to show what data flows along
certain control arrows, much in the manner of
structure charts [Yourdon 78] or "Buhr charts®
{Buhr 84]. These annotations will not appear on the
final object diagrams.

In figure 9, the junior level components do not
interact directly. All data flow between junior level
objects must pass through the senior object, though
each object still receives gnd produces_all necessary
data (for simplicity not all data flow is shown in
figure 9). This design is somewhat like an object-
oriented version of the structured designs of Yourdon
and Constantine {Yourdon 78].

ey

General Object-Oriented Software Development with Ada

FIGURE 9 Centralized Design

We can remove the data flow control from the senior
object and let the junior objects pass data directly
between themselves, using operations within the
virtual language layer (see figure 10). The senior
object has been reduced to simply activating various
operations in the virtual machine layer, with very
little data flow.

5207

We can even remove the senior object completely by
distributing control among the junior level objects
(see figure 11). The splitting of the RUN control
arrow in figure 11 means that the three objects are
activated simultaneously and that they run
concurrently. The seniority hierarchy has collapsed,
leaving a homologous or non-hierarchical design
[Yourdon 78] (no semiority hie-archy, that is; the
composition hierarchy still remains).

A design which is decentralized like figure 11 at all
composition levels is very similar to what would be
produced by the PAMELA methodology [Cherry 86].
In fact, it should be possible to apply PAMELA
design criteria to the upper levels of an object
diagram based design of a highly concurrent system.
All concurrent objects would then be composed, at a
certain level, of objects representing certain process
“idioms" [Cherry 86). Below this level concurrency
would generally no longer be advantageous.

RUN

ATTITUDE
OYNAMICS

ATTITUDE
STATE

FIGURE 11 Decentralized Design

To complete the design, we need to add a virtual
language layer of utility objects which preserve the
level of abstraction of the problem domain entities. In
the case of the ATTITUDE SIMULATOR these
objects might include VECTOR, MATRIX,
GROUND COMMAND and simulation
PARAMETER types. Figure 12 shows how these
objects might be added to the simulator design of
Figure 10.

——— e, s, jfeeemsn petmmd pemadd feieemay pemend fesmmed pesmmed ey e

Figure 12 gives one complete level of the design of
the ATTITUDE SIMULATOR. Note that figure 12
does not include the data flow arrows used in earlier
figures. When there are several control paths on a
complicated object diagram, it rapidly becomes
cumbersome to show data flows. Instead, object
descriptions for each object on 2 diagram provide
details of the data flow.

An object description includes a list of all operations
provided by an object and, for each arrow leaving the
object, a list of operations used from another object.
We can identify the operations provided and used by
each object in terms of the specified data flow and
the designed control flow. The object description can
be produced by matching data flows to operations.
For example, the description for the ATITITUDE
DYNAMICS object in figure 12 might be:

Provides:

procedure Initialize; — B
procedure Integrate (For_Duration: in DURATION);
procedure Apply (Torque: in VECTOR);

function Current__ Attitude return ATTITUDE;
function Current_ Angular_ Velocity

return VECTOR;

Uses:

5.0 LINEAR ALGEBRA
Add (Vector)
Dot
Multiply (Scalar)
Multiply (Matrix)

6.0 PARAMETER DATABASE
Get

We could next proceed to refine the objects used in
figure 12 and recursively construct lower level object
diagrams. These lower level designs must meet the
functionality of the system specification and provide
the operations listed in the object description. The
design process continues recursively until the entire
system is designed and all objects are completely
decomposed.

The GRODY design of figure 4 is basically the same
as the example design of figure 12. However, the
«-~GRODY team chose to simplify the design by
combining the ATTITUDE DYNAMICS aad
SPACECRAFT HARDWARE objects into a single
TRUTH MODEL subsystem object, similar to the
corresponding subsystem in the FORTRAN design.

5207

General Object-Oriented Software Development with Ada

Further, in GRODY, the LINEAR ALGEBRA
functions are part of a UTILITIES module not shown
in figure 4.

A A
] l ?
PARAMETER

DATABASE COMMANDO

DATAS
FIGURE 12 Attitude Dynamics Simulator Design

Implementation

The transition from an object diagram to Ada is)

straightforward. Package specifications are derived
from the list of operations provided by an object. For
the ATTITUDE DYNAMICS object the package
specification is:

package Attitude_Dynamics is
sibtype ATTITUDE is Linear_Algebra MATRIX;

procedure Initialize;
procedure Integrate

(For__Duration : in DURATION);
procedure Apply

(Torque : in Linear__Algebra. VECTOR),

function Current_ Attitude
return ATTITUDE;

function Current__Angular_ Velocity
return Linear_Algebra. VECTOR;

T e

end Dynamics;

- —

General Object-Oriented Software Development with Ada

The package specifications derived from the top level
object diagram can either be made library units or
placed in the declarative part of the top level Ada
procedure. For lower level object diagrams the
mapping is similar, with component package
specifications being nested in the package body of the
composite object. States are mapped into package
body variables. This direct mapping-produces a highly
nested program structure. Alternatively, some or all
of these packages can be made library units or even
reused from an existing library. However, this may
require additional packages to contain data types and
state variables used by two or more library units.
Nevertheless, experience has shown that, to promote
reusability and reduce the compilation burden, it is
best to avoid nesting of code {Godfrey 87}, though it
is important to retain leveling in the design.

The process of transforming object diagrams to Ada
is followed down all the object diagram levels until
we reach the level of implementing individual
subprograms. Low-level subprograms can be designed
and implemented using traditional functional
techniques. They should generally be coded as
subunits, rather than being embedded in package
bodies.

The clear definition of abstract interfaces in an
object-oriented design can also greatly simplify
testing. When testing an object, there is a well
defined "virtual language™ of operations it requires
from objects at a junior level of abstraction, some of
which may be stubbed-out for initial testing. Further,
object-oriented composition encourages incremental
integration testing, since the "unit testing” of a
composite object really consists of "integration
testing™ the component objects at a lower level of
abstraction.

3.7 Reuse

The concept of generic objects provides a powerful
tool for reusability. Generic parameters may be used
to cut the dependencies of a general object on other
specific objects, allowing the general object to be
reused in similar but different contexts. Consider,
for example, a general numeric integrator with the
following package specification:

5207

geaeric

type REAL Is digits <}
type STATE _VECTOR is
array (INTEGER range <) of REAL;
with function State_ Derivative
(T: DURATION; -- from reference time
X : STATE_VECTOR)
return STATE_VECTOR;

package Generic_Integrator is

procedure Integrate

(For_Duration : in DURATION);
fuaction Current_State

return STATE_VECTOR;

procedure Initialize;
end Generic_ Integrator;

This package provides the ability to numerically
integrate a vector differential equation with an-
arbitrary state vector size. The "Integrate” procedure
can be implemented as a vector equation, or as a set
of individual real-valued functions. To implement it
as a single vector equation we will need the
operations provided by a LINEAR ALGEBRA object.
These operations can be incorporated in two ways.
One possibility is to make the operations needed into
generic formal parameters. Another is to have the
body of the integrator depend directly on LINEAR
ALGEBRA.

Each of these methods has advantages and drawbacks.
Using generic formal subprograms enhances
reusability by making the component self-contained,
but if too many are needed the interface becomes
cqfnplex. Depending on LINEAR ALGEBRA within
the GENERIC INTEGRATOR makes a cleaner
interface, but couples the generic package to another
library unit. The GRODY team has used both
methods. Figure 13 shows the composition of
GENERIC INTEGRATOR assuming the latter choice.

Figure 14 shows a use of the GENERIC
INTEGRATOR in the composition of the
ATTITUDE DYNAMICS object. The component
object ATTITUDE INTEGRATOR is an instantiation
of the GENERIC INTEGRATOR object. The generic
object is instantiated in figure 1[4 with the
ATTITUDE EQUATION subprogram as the generic
actual parameter. Most of the ATTITUDE
DYNAMICS operations are shown in figure 14 as

General Object-Oriented Software Development with Ada

component procedures, represented by rectangles. The
“Integrate” operation, however, is directly inherited
from the ATTTTUDE INTEGRATOR object.

1

CURRENT
STATE

INTEGRATE INITIALIZE

9
ot \“.!L &
STATE INTEGRATOR
DERIVATIVE STATE

UNEAR
ALGEBRA

LEG

ENO
onsect ()

c
=

PROCEDURE
STATE DATA

GENERIC FORMAL
SUSPROGRAM

CONTROL ALOW

DEPENOENCY WO
CONTROL FLOW

b4l

Figure 13 Generic Integrator Object Composition

Ada features such as generic packages are useful
lools, but language features are not sufficient to
guarantee high levels of software reuse. What is also
needed is an approach to specifying and designing
reusable components. Using an object-oriented
approach is useful not because object-oriented design
is essential for reuse, but because the underlying
concepts are. These crucial concepts are abstraction,
information hiding, levels of virtual languages (often
called virtual "machines”) and inheritance {Parnas 79,
Cox 86]).

Smalltalk’s subclassing (Goldberg 83] provides an
elegant means of supporting inheritance. Ada does not
directly support inheritance, but the concept can be
simulated by using “call-throughs.” A call-through is
a subprogram that has little function other than to call
on another package's subprogram. To simulate
inheritance when implementing the
Attitude_ Dynamics package the subprogram Integrate
would be respecified in the Attitude__Dynamics
package, with the subprogram body in
Attitude_Dynamics calling on the corresponding
operation from Attitude__Integrator.

5207

2.3 3.4 7.1 2.3
CURRENT CURRENT INMTIAUZE APPLY
ATTITUCE | ANG. VELOCITY

2.3 g ; i
ATTITUDE ¢ H ¢
INTEGRATOR H
7.8 H
ATTITUDE
EQUATIONS \
‘\" - ?
1 . 2.8
4 CURRENT
s 2.7 TOROUE
ENVIRONMENT

FIGURE 14 Autitude Dynamics Object Compasition

This technique is clearly less elegant than Smalltalk
subclassing, but it also has advantages. First, Ada
allows inheritance from more than one object.
Second, Smalltalk forces the inheritance of all
operations and data. An operation can be overridden,
but not removed, from a class. The Ada specif ication
of the composite package gives the developer precise
control over which operations and data items are
visible or accessible. (See [Seidewitz 87] for a more
detailed discussion of Ada and the concept of

inheritance.)

4. Conclusion

The GRODY project has provided an extremely
valuable experience in the application of object-
oriented principles to a real system. This experience
guided the creation of the GOOD methodology which
is now being used on an increasing number of
projects inside and outside of the Goddard Space
Flight Center. As with any pilot project, some of the
major products of GRODY are the lessons learned

along the way.

As part of the GRODY project, 2 detailed assessment
has been made of the team's experiences during
design [Godfrey 87). At this time, however, most of
the observations must remain qualitative.
Nevertheless, it is clear that the GRODY design is
significantly different from previous FORTRAN

simulator designs [Agresti 86].

.

General Object-Oriented Software Development with Ada

It also became clear during the GRODY project that
the GOOD methodology does not fit comfortably into
the traditional life cycle management model. At the
very least, the design phase should be extended and
design reviews should occur at different poiats in the
life cycle. The preliminary design review should
occur later in the design phase and should inciude
detailed object diagrams for the upper levels of the
system, perhaps down to the level at which the design
becomes more procedural than object-oriented. The
critical design review would then include the detailed
procedural designs, perhaps using an Ada-based
design language. This review might actually take
place as a series of incremental reviews of different
portions of the design. This later approach is
supported by the well-defined modularity of an
object-oriented design.

The traditional functional viewpoint provides a
comprehensive framework for the entire software life
cycle. This viewpoint reflects the action-oriented
nature of the machines on which software is run.
The object-oriented approach discussed here can also
provide a comprehensive view of the life cycle. The
object-oriented viewpoint, however, reflects the
natural structure of the problem domain rather than
the implicit structure of our hardware. Thus, it
provides a "higher-level" approach to software
development which decreases the distance between
problem domain and software solution. By making
complex software easier to understand, this simplifies
both system development and maintenance.

References

[Abbott 83]

Abbott, R. J. "Program Design by Informal English
Description,” Communications of the ACM, September
1983.)

[Agresti 84]

Agresti, William W. “An Approach to Developing
Specification Measures,” Proceedings of the 9th
Annual Software Engineering Workshop, GSFC
Document SEL-84-004, November 1984,

(Agresti 86]

Agresti, William W., et. al. *Designing with Ada for
Satellite Simulation: a Case Study,” Proceedings of the
Ist International Conference on Ada Applications for
the Space Station, June 1986.

5207

[Agresti 87] .
Agresti, William W. Guidelines for Applying the
Composite Specification Model (CSM), GSFC
Document SEL-87-003, June 1987.

{Bailin 88]

Bailin, Sidney C. and J. Michael Moore. "An Object-
Oriented Specification Method for Ada,” to be
presented at the Fifth Washington Ada Symposium,

June 1988.

[Basili 85]
Basili, V. R., et. al “Characterization of an Ada
Software Development,” Computer, September 1985.

{Booch 83]
Booch, Grady. Software Engineering with Ada,

Benjamin/Cummings, 1983.

[Booch 86a]
Booch, Grady. "Object-Oriented Software

Development,” JEEE Transactions on Software
Engineering, February 1986.

[Booch 86b]
Booch, Grady. Software Engineering with Ada. 2nd

Edition, Benjamin/Cummings, 1986.

{Booch 87] .
Booch, Grady. Software Components with Ada,

Benjamin/Cummings, 1987.

[Buhr 84]
Buhr, R. J. A. System Design with Ada. Prentice-

Hall, 1984.

(Chén 76]

Chen, P. "The Entity-Relationship Model -- Toward
a Unified View of Data,” ACM Transactions on Data
Base Systems, March 1976.

{Cherry 85]
Cherry, George W.
Thought**Tools, 1985.

PAMELA Course Notes,

[Cherry 86)
Cherry, George W. PAMELA Designer's Handbook,

Thought**Tools, 1986.

[Cherry 88]
Cherry, George W. PAMELA 2: An Ada-Based
Object-Oriented Design Method, Thought**Tools,

February 1988.

—- 9

—

e T s TR e S o I c B e B

—

[Cox 86} -
Cox, Brad. Object-Oriented Programming: an
Evolutionary Approach, Addison-Wesley, 1986.

{Dijkstra 68}

Dijkstra, Edsgar W. "The Structure of the ‘THE’
Multiprogramming System,” Commurnications of the
ACM, May 1968.

[Godfrey 87]

Godfrey, Sara, Carolyn Brophy, et. al. Assessing the
Ada Design Process and its Implications: a Case
Study, GSFC Document SEL-87-004, July 1987.

[Goldberg 83]
Goldberg, Adele and David Robson. Smalltalk-80:
The Language and Its Implementation, Addison-
Wesley, 1983.

{McGarry 88}

McGarry, Frank and William Agresti. "Measuring Ada
for Software Development in the Software
Engineering Laboratory (SEL)," Proceedings of the
21st Hawaii [nternational Conference on Software
Engineering, January 1988.

{Nelson 86]

Nelson, Robert W. “NASA Ada Experiment --
Attitude Dynamic Simulator,” Proceedings of the
Washington Ada Symposium, March 1986.

[Parnas 72)

Parnas, David L. “On the Criteria to be Used in
Decomposing Systems into Modules," Communications
of the ACM, December, 1972.

[Parnas 79)

Parnas, David L. "Designing Software for Ease of
Expansion and Contraction,” [EEE Transactions on
Software Engineering, March 1979.

5207

General Object-Oriented Software Development with Ada

{Rajlich 85])

Rajlich, Vaclav. "Paradigms for Design and
Implementation in Ada," Communications of the
ACM, July 1985.

{Seidewitz 86a]

Seidewitz, Ed and Mike Stark. "Towards a General
Object-Oriented Software Development
Methodology,” Proceedings of the 1st International
Conference on Ada Applications for the Space Station,
June 1986.

[Seidewitz 86b)

Seidewitz, Ed and Mike Stark. General Object-
Oriented Software Development, GSFC Document
SEL-86-002, August 1986.

[Seidewitz 87]

Seidewitz, Ed. "Object-Oriented Programming in
Smalltalk and Ada", Proceedings of the Conference on
Object-Oriented Programming, Languages, Systems
and Applications, October 1987.

[Stark 87]

Stark, Mike and Ed Seidewitz. "Towards a General
Object-Orieated Ada Lifecycle,” Proceedings of the
Joint Conference an Ada Technology / Washingion
Ada Symposium, March 1986.

[Ward 85]

Ward, Paul T. and Stephen J. Mellor, Structured
Development for Real-Time Systems, Yourdon Press,
1985.

[(Yourdon 78) :
Yourdon, Edward and Larry L. Constantine.
Stryctured Design: Fundamentals of a Discipline of
Computer Program and Systems Design, Yourdon
Press, 1978.

